#define LORA_HARDWARE_SPI // #define DEVICE_MODE_TX #define DEVICE_MODE_RX #define FEATURE_TX_OLED // #define DEBUG_SERIAL #define DEBUG_PING_PONG // #define DEBUG_LED // #define WAIT_FOR_SERIAL #include #include "variables.h" #include "sbus.h" #include "qsp.h" // LoRa32u4 ports #define LORA32U4_SS_PIN 8 #define LORA32U4_RST_PIN 4 #define LORA32U4_DI0_PIN 7 int ppm[16] = {0}; /* * Main defines for device working in TX mode */ #ifdef DEVICE_MODE_TX #include PPMReader ppmReader(PPM_INPUT_PIN, PPM_INPUT_INTERRUPT, true); #ifdef FEATURE_TX_OLED #define OLED_RESET -1 #include Adafruit_SSD1306 display(OLED_RESET); uint32_t lastOledTaskTime = 0; #endif #endif /* * Main defines for device working in RX mode */ #ifdef DEVICE_MODE_RX uint32_t sbusTime = 0; uint8_t sbusPacket[SBUS_PACKET_LENGTH] = {0}; uint32_t lastRxStateTaskTime = 0; #endif /* * Start of QSP protocol implementation */ QspConfiguration_t qsp = {}; RxDeviceState_t rxDeviceState = {}; #ifdef LORA_HARDWARE_SPI uint8_t getRadioRssi(void) { //Map from -164:0 to 0:255 return map(constrain(LoRa.packetRssi() * -1, 0, 164), 0, 164, 255, 0); } float getRadioSnr(void) { return (uint8_t) constrain(LoRa.packetSnr(), 0, 255); } void radioPacketStart(void) { LoRa.beginPacket(); } void radioPacketEnd(void) { LoRa.endPacket(); //After ending packet, put device into receive mode again LoRa.receive(); } void writeToRadio(uint8_t dataByte, QspConfiguration_t *qsp) { //Compute CRC qspComputeCrc(qsp, dataByte); //Write to radio LoRa.write(dataByte); } #endif /* display.clearDisplay(); display.setCursor(0,0); display.print("Lat:"); display.print(remoteData.latitude); display.display(); */ void setup(void) { #ifdef DEBUG_SERIAL Serial.begin(115200); #endif qsp.hardwareWriteFunction = writeToRadio; #ifdef DEVICE_MODE_RX qsp.deviceState = DEVICE_STATE_FAILSAFE; #else qsp.deviceState = DEVICE_STATE_OK; #endif #ifdef LORA_HARDWARE_SPI #ifdef WAIT_FOR_SERIAL while (!Serial) { ; // wait for serial port to connect. Needed for native USB } #endif /* * Setup hardware */ LoRa.setPins( LORA32U4_SS_PIN, LORA32U4_RST_PIN, LORA32U4_DI0_PIN ); if (!LoRa.begin(868E6)) { #ifdef DEBUG_SERIAL Serial.println("LoRa init failed. Check your connections."); #endif while (true); } LoRa.setSignalBandwidth(250E3); LoRa.setSpreadingFactor(7); LoRa.setCodingRate4(5); LoRa.onReceive(onReceive); LoRa.receive(); #endif #ifdef DEVICE_MODE_RX //initiallize default ppm values for (int i = 0; i < 16; i++) { ppm[i] = PPM_CHANNEL_DEFAULT_VALUE; } pinMode(RX_ADC_PIN_1, INPUT); pinMode(RX_ADC_PIN_2, INPUT); pinMode(RX_ADC_PIN_3, INPUT); Serial1.begin(100000, SERIAL_8E2); #endif #ifdef DEVICE_MODE_TX TCCR1A = 0; //reset timer1 TCCR1B = 0; TCCR1B |= (1 << CS11); //set timer1 to increment every 0,5 us or 1us on 8MHz #ifdef FEATURE_TX_OLED display.begin(SSD1306_SWITCHCAPVCC, 0x3C); // initialize with the I2C addr 0x3C (for the 128x32) display.setTextSize(1); display.setTextColor(WHITE); display.clearDisplay(); display.display(); #endif #endif pinMode(LED_BUILTIN, OUTPUT); /* * TX should start talking imediately after power up */ #ifdef DEVICE_MODE_TX qsp.canTransmit = true; #endif #ifdef DEBUG_SERIAL qsp.debugConfig |= DEBUG_FLAG_SERIAL; #endif #ifdef DEBUG_LED qsp.debugConfig |= DEBUG_FLAG_LED; #endif } #ifdef DEVICE_MODE_RX void updateRxDeviceState(RxDeviceState_t *rxDeviceState) { rxDeviceState->rxVoltage = map(analogRead(RX_ADC_PIN_1), 0, 1024, 0, 255); rxDeviceState->a1Voltage = map(analogRead(RX_ADC_PIN_2), 0, 1024, 0, 255); rxDeviceState->a2Voltage = map(analogRead(RX_ADC_PIN_3), 0, 1024, 0, 255); rxDeviceState->rssi = getRadioRssi(); rxDeviceState->snr = getRadioSnr(); } #endif void loop(void) { uint32_t currentMillis = millis(); bool transmitPayload = false; /* * Watchdog for frame decoding stuck somewhere in the middle of a process */ if ( qsp.protocolState != QSP_STATE_IDLE && abs(currentMillis - qsp.frameDecodingStartedAt) > QSP_MAX_FRAME_DECODE_TIME ) { qsp.protocolState = QSP_STATE_IDLE; } if ( qsp.forcePongFrame && !transmitPayload && qsp.protocolState == QSP_STATE_IDLE ) { qsp.forcePongFrame = false; qsp.lastFrameTransmitedAt[QSP_FRAME_PONG] = currentMillis; qsp.frameToSend = QSP_FRAME_PONG; transmitPayload = true; } #ifdef DEVICE_MODE_TX #ifdef FEATURE_TX_OLED if ( currentMillis - lastOledTaskTime > OLED_UPDATE_RATE ) { lastOledTaskTime = currentMillis; display.clearDisplay(); display.setTextColor(WHITE, BLACK); display.setCursor(0, 0); display.print("TX RSSI: "); display.print(map(getRadioRssi(), 0, 255, 0, 100)); display.setCursor(0, 12); display.print("TX SNR: "); display.print(getRadioSnr()); display.setCursor(0, 24); display.print("RX RSSI: "); display.print(map(rxDeviceState.rssi, 0, 255, 0, 100)); display.setCursor(0, 36); display.print("RX SNR: "); display.print(rxDeviceState.snr); display.setCursor(0, 46); display.print("Roundtrip: "); display.print(rxDeviceState.roundtrip); display.display(); } #endif #ifdef DEBUG_PING_PONG //PING frame if ( currentMillis - qsp.lastFrameTransmitedAt[QSP_FRAME_PING] > TX_PING_RATE && !transmitPayload && qsp.protocolState == QSP_STATE_IDLE ) { qsp.lastFrameTransmitedAt[QSP_FRAME_PING] = currentMillis; qspClearPayload(&qsp); encodePingPayload(&qsp, micros()); qsp.frameToSend = QSP_FRAME_PING; transmitPayload = true; } #endif /* * RC_DATA QSP frame */ if ( currentMillis - qsp.lastFrameTransmitedAt[QSP_FRAME_RC_DATA] > TX_RC_FRAME_RATE && !transmitPayload && qsp.protocolState == QSP_STATE_IDLE && ppmReader.isReceiving() ) { qsp.lastFrameTransmitedAt[QSP_FRAME_RC_DATA] = currentMillis; qspClearPayload(&qsp); encodeRcDataPayload(&qsp, &ppmReader, PPM_INPUT_CHANNEL_COUNT); qsp.frameToSend = QSP_FRAME_RC_DATA; transmitPayload = true; } #endif #ifdef DEVICE_MODE_RX if (currentMillis > sbusTime) { sbusPreparePacket(sbusPacket, ppm, false, (qsp.deviceState == DEVICE_STATE_FAILSAFE)); Serial1.write(sbusPacket, SBUS_PACKET_LENGTH); sbusTime = currentMillis + SBUS_UPDATE_RATE; } /* * This routine updates RX device state and updates one of radio channels with RSSI value */ if (currentMillis - lastRxStateTaskTime > RX_TASK_HEALTH) { lastRxStateTaskTime = currentMillis; updateRxDeviceState(&rxDeviceState); ppm[RSSI_CHANNEL - 1] = map(rxDeviceState.rssi, 0, 255, 1000, 2000); if (qsp.deviceState == DEVICE_STATE_FAILSAFE) { digitalWrite(LED_BUILTIN, HIGH); } else { digitalWrite(LED_BUILTIN, !digitalRead(LED_BUILTIN)); } } /* * RX_HEALTH QSP frame */ if ( currentMillis - qsp.lastFrameTransmitedAt[QSP_FRAME_RX_HEALTH] > RX_RX_HEALTH_FRAME_RATE && !transmitPayload && qsp.protocolState == QSP_STATE_IDLE ) { qsp.lastFrameTransmitedAt[QSP_FRAME_RX_HEALTH] = currentMillis; qspClearPayload(&qsp); encodeRxHealthPayload(&qsp, &rxDeviceState); qsp.frameToSend = QSP_FRAME_RX_HEALTH; transmitPayload = true; } #endif if (qsp.canTransmit && transmitPayload) { radioPacketStart(); qspEncodeFrame(&qsp); radioPacketEnd(); #ifdef DEBUG_LED digitalWrite(LED_BUILTIN, HIGH); delay(10); digitalWrite(LED_BUILTIN, LOW); delay(70); digitalWrite(LED_BUILTIN, HIGH); delay(10); digitalWrite(LED_BUILTIN, LOW); #endif transmitPayload = false; } /* * Here we do state handling and similar operations */ #ifdef DEVICE_MODE_RX if (abs(currentMillis - qsp.lastFrameReceivedAt[QSP_FRAME_RC_DATA]) > RX_FAILSAFE_DELAY) { qsp.deviceState = DEVICE_STATE_FAILSAFE; } else { qsp.deviceState = DEVICE_STATE_OK; } #endif } #ifdef LORA_HARDWARE_SPI void onReceive(int packetSize) { if (packetSize == 0) return; while (LoRa.available()) { qspDecodeIncomingFrame(&qsp, LoRa.read(), ppm, &rxDeviceState); } } #endif